Adenosine promotes vascular barrier function in hyperoxic lung injury

نویسندگان

  • Jonathan Davies
  • Harry Karmouty‐Quintana
  • Thuy T. Le
  • Ning‐Yuan Chen
  • Tingting Weng
  • Fayong Luo
  • Jose Molina
  • Bhagavatula Moorthy
  • Michael R. Blackburn
چکیده

Hyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response in the lung with cellular infiltration and pulmonary edema. Adenosine is a signaling molecule that is generated extracellularly by CD73 in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to be elevated and plays a protective role in acute injury situations. In particular, ADORA2B activation is protective in acute lung injury. However, little is known about the role of adenosine signaling in hyperoxic lung injury. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which is protective through ADORA2B signaling pathways. To test this hypothesis, we exposed C57BL6, CD73(-/-), and Adora2B(-/-) mice to 95% oxygen or room air and examined markers of pulmonary inflammation, edema, and monitored lung histology. Hyperoxic exposure caused pulmonary inflammation and edema in association with elevations in lung adenosine levels. Loss of CD73-mediated extracellular adenosine production exacerbated pulmonary edema without affecting inflammatory cell counts. Furthermore, loss of the ADORA2B had similar results with worsening of pulmonary edema following hyperoxia exposure without affecting inflammatory cell infiltration. This loss of barrier function correlated with a decrease in occludin in pulmonary vasculature in CD73(-/-) and Adora2B(-/-) mice following hyperoxia exposure. These results demonstrate that exposure to a hyperoxic environment causes lung injury associated with an increase in adenosine concentration, and elevated adenosine levels protect vascular barrier function in hyperoxic lung injury through the ADORA2B-dependent regulation of occludin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak.

Extracellular adenosine has been implicated in vascular adaptation to hypoxia. Based on the observation that increases in intracellular adenosine can effectively elevate extracellular adenosine, we studied the contribution of adenosine kinase (AK, intracellular conversion of adenosine to adenosine monophosphate [AMP]) to vascular adenosine responses. Initial in vitro studies of ambient hypoxia ...

متن کامل

VEGF‐D promotes pulmonary oedema in hyperoxic acute lung injury

Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpress...

متن کامل

Role of coagulation pathways and treatment with activated protein C in hyperoxic lung injury.

BACKGROUND Activated protein C (APC) significantly decreases mortality in severe sepsis, but its role in acute lung injury from non-infectious aetiologies is unclear. The role of APC in hyperoxic acute lung injury was tested by studying the physiology of lung injury development, measurement of key coagulation proteins and treatment with murine APC (mAPC). METHODS Mice were continuously expose...

متن کامل

Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury.

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these dat...

متن کامل

Metformin-stimulated AMPK-α1 promotes microvascular repair in acute lung injury.

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014